序列化对于提高分布式程序的性能起到非常重要的作用。一个不好的序列化方式(如序列化模式的速度非常慢或者序列化结果非常大)会极大降低计算速度。很多情况下,这是你优化Spark应用的第一选择。Spark试图在方便和性能之间获取一个平衡。Spark提供了两个序列化类库:
你可以在创建SparkContext之前,通过调用System.setProperty("spark.serializer", "spark.KryoSerializer"),将序列化方式切换成Kryo。Kryo不能成为默认方式的唯一原因是需要用户进行注册;但是,对于任何“网络密集型”(network-intensive)的应用,我们都建议采用该方式。
最后,为了将类注册到Kryo,你需要继承 spark.KryoRegistrator并且设置系统属性spark.kryo.registrator指向该类,如下所示:
import com.esotericsoftware.kryo.Kryo class MyRegistrator extends spark.KryoRegistrator { override def registerClasses(kryo: Kryo) { kryo.register(classOf[MyClass1]) kryo.register(classOf[MyClass2]) } } // Make sure to set these properties *before* creating a SparkContext! System.setProperty("spark.serializer", "spark.KryoSerializer") System.setProperty("spark.kryo.registrator", "mypackage.MyRegistrator") val sc = new SparkContext(...)
Kryo 文档描述了很多便于注册的高级选项,例如添加用户自定义的序列化代码。
如果对象非常大,你还需要增加属性spark.kryoserializer.buffer.mb的值。该属性的默认值是32,但是该属性需要足够大以便能够容纳需要序列化的最大对象。
最后,如果你不注册你的类,Kryo仍然可以工作,但是需要为了每一个对象保存其对应的全类名(full class name),这是非常浪费的。
内存优化有三个方面的考虑:对象所占用的内存(你或许希望将所有的数据都加载到内存),访问对象的消耗以及垃圾回收(garbage collection)所占用的开销。
通常,Java对象的访问速度更快,但其占用的空间通常比其内部的属性数据大2-5倍。这主要由以下几方面原因:
该章节讨论如何估算对象所占用的内存以及如何进行改进——通过改变数据结构或者采用序列化方式。然后,我们将讨论如何优化Spark的缓存以及Java内存回收(garbage collection)。
确定对象所需要内存大小的最好方法是创建一个RDD,然后将其放入缓存,最后阅读驱动程序(driver program)中SparkContext的日志。日志会告诉你每一部分占用的内存大小;你可以收集该类信息以确定RDD消耗内存的最终大小。日志信息如下所示:
INFO BlockManagerMasterActor: Added rdd_0_1 in memory on mbk.local:50311 (size: 717.5 KB, free: 332.3 MB)
该信息表明RDD0的第一部分消耗717.5KB的内存。
减少内存使用的第一条途径是避免使用一些增加额外开销的Java特性,例如基于指针的数据结构以对对象进行再包装等。有很多方法:
经过上述优化,如果对象还是太大以至于不能有效存放,还有一个减少内存使用的简单方法——序列化,采用RDD持久化API的序列化StorageLevel,例如MEMORY_ONLY_SER。Spark将RDD每一部分都保存为byte数组。序列化带来的唯一缺点是会降低访问速度,因为需要将对象反序列化。如果需要采用序列化的方式缓存数据,我们强烈建议采用Kryo,Kryo序列化结果比Java标准序列化更小(其实比对象内部的原始数据都要小)。
如果你需要不断的“翻动”程序保存的RDD数据,JVM内存回收就可能成为问题(通常,如果只需进行一次RDD读取然后进行操作是不会带来问题的)。当需要回收旧对象以便为新对象腾内存空间时,JVM需要跟踪所有的Java对象以确定哪些对象是不再需要的。需要记住的一点是,内存回收的代价与对象的数量正相关;因此,使用对象数量更小的数据结构(例如使用int数组而不是LinkedList)能显著降低这种消耗。另外一种更好的方法是采用对象序列化,如上面所描述的一样;这样,RDD的每一部分都会保存为唯一一个对象(一个byte数组)。如果内存回收存在问题,在尝试其他方法之前,首先尝试使用序列化缓存(serialized caching)。
每项任务(task)的工作内存以及缓存在节点的RDD之间会相互影响,这种影响也会带来内存回收问题。下面我们讨论如何为RDD分配空间以便减轻这种影响。
估算内存回收的影响
优化内存回收的第一步是获取一些统计信息,包括内存回收的频率、内存回收耗费的时间等。为了获取这些统计信息,我们可以把参数-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps添加到环境变量SPARK_JAVA_OPTS。设置完成后,Spark作业运行时,我们可以在日志中看到每一次内存回收的信息。注意,这些日志保存在集群的工作节点(work nodes)而不是你的驱动程序(driver program).优化缓存大小
用多大的内存来缓存RDD是内存回收一个非常重要的配置参数。默认情况下,Spark采用运行内存(executor memory,spark.executor.memory或者SPARK_MEM)的66%来进行RDD缓存。这表明在任务执行期间,有33%的内存可以用来进行对象创建。
如果任务运行速度变慢且JVM频繁进行内存回收,或者内存空间不足,那么降低缓存大小设置可以减少内存消耗。为了将缓存大小修改为50%,你可以调用方法System.setProperty("spark.storage.memoryFraction", "0.5")。结合序列化缓存,使用较小缓存足够解决内存回收的大部分问题。如果你有兴趣进一步优化Java内存回收,请继续阅读下面文章。
本文中的所有译文仅用于学习和交流目的,转载请务必注明文章译者、出处、和本文链接。 2KB翻译工作遵照 CC 协议,如果我们的工作有侵犯到您的权益,请及时联系我们。2KB项目(www.2kb.com,源码交易平台),提供担保交易、源码交易、虚拟商品、在家创业、在线创业、任务交易、网站设计、软件设计、网络兼职、站长交易、域名交易、链接买卖、网站交易、广告买卖、站长培训、建站美工等服务